
Another Module System for SchemeJonathan Rees3 January 1993 (updated 15 January 1994)This memo describes a module system for the Scheme programming lan-guage. The module system is unique in the extent to which it supports bothstatic linking and rapid turnaround during program development. The de-sign was inuenced by Standard ML modules[4] and by the module systemfor Scheme Xerox[3]. It has also been shaped by the needs of Scheme 48,a virtual-machine-based Scheme implementation designed to run both onworkstations and on relatively small (less than 1 Mbyte) embedded con-trollers.Except where noted, everything described here is implemented in Scheme 48,and exercised by the Scheme 48 implementation and a few application pro-grams.Unlike the Common Lisp package system, the module system describedhere controls the mapping of names to denotations, not the mapping ofstrings to symbols.IntroductionThe module system supports the structured division of a corpus of Schemesoftware into a set of modules. Each module has its own isolated namespace,with visibility of bindings controlled by module descriptions written in aspecial con�guration language.A module may be instantiated multiple times, producing several pack-ages, just as a lambda-expression can be instantiated multiple times to pro-duce several di�erent procedures. Since single instantiation is the normalcase, I will defer discussion of multiple instantiation until a later section. Fornow you can think of a package as simply a module's internal environmentmapping names to denotations.A module exports bindings by providing views onto the underlying pack-age. Such a view is called a structure (terminology from Standard ML). Onemodule may provide several di�erent views. A structure is just a subset ofthe package's bindings. The particular set of names whose bindings areexported is the structure's interface.A module imports bindings from other modules by either opening oraccessing some structures that are built on other packages. When a structure1

is opened, all of its exported bindings are visible in the client package. On theother hand, bindings from an accessed structure require explicitly quali�edreferences written with the structure-ref operator.For example:(define-structure foo (export a c cons)(open scheme)(begin (define a 1)(define (b x) (+ a x))(define (c y) (* (b a) y))))(define-structure bar (export d)(open scheme foo)(begin (define (d w) (+ a (c w)))))This con�guration de�nes two structures, foo and bar. foo is a view ona package in which the scheme structure's bindings (including define and+) are visible, together with bindings for a, b, and c. foo's interface is(export a c cons), so of the bindings in its underlying package, foo onlyexports those three. Similarly, structure bar consists of the binding of dfrom a package in which both scheme's and foo's bindings are visible. foo'sbinding of cons is imported from the Scheme structure and then re-exported.A module's body, the part following begin in the above example, isevaluated in an isolated lexical scope completely speci�ed by the packagede�nition's open and access clauses. In particular, the binding of the syn-tactic operator define-structure is not visible unless it comes from someopened structure. Similarly, bindings from the scheme structure aren't vis-ible unless they become so by scheme (or an equivalent structure) beingopened.The con�guration languageThe con�guration language consists of top-level de�ning forms for modulesand interfaces. Its syntax is given in �gure 1.A define-structure form introduces a binding of a name to a structure.A structure is a view on an underlying package which is created according tothe clauses of the define-structure form. Each structure has an interfacethat speci�es which bindings in the structure's underlying package can beseen via that structure in other packages.An open clause speci�es which structures will be opened up for use insidethe new package. At least one package must be speci�ed or else it will be2

hcon�gurationi �! hde�nitioni�hde�nitioni �! (define-structure hnamei hinterfacei hclausei�)j (define-structures ((hnamei hinterfacei)�) hclausei�)j (define-interface hnamei hinterfacei)j (define-syntax hnamei htransformer-speci)hclausei �! (open hnamei�)j (access hnamei�)j (begin hprogrami)j (files h�lespeci�)j (optimize hoptimize-speci�)j (for-syntax hclausei�)hinterfacei �! (export hitemi�)j hnameij (compound-interface hinterfacei�)hitemi �! hnamei j (hnamei htypei) j ((hnamei�) htypei)Figure 1: The con�guration language.impossible to write any useful programs inside the package, since define,lambda, cons, structure-ref, etc. will be unavailable. Typical packages tolist in the open clause are scheme, which exports all bindings appropriate toRevised5 Scheme, and structure-refs, which exports the structure-refoperator (see below). For building structures that export structures, thereis a defpackage package that exports the operators of the con�gurationlanguage. Many other structures, such as record and hash table facilities,are also available in the Scheme 48 implementation.An access clause speci�es which bindings of names to structures will bevisible inside the package body for use in structure-ref forms. structure-ref has the following syntax:hexpressioni �! (structure-ref hstruct-namei hnamei)The hstruct-namei must be the name of an accessed structure, and hnameimust be something that the structure exports. Only structures listed inan access clause are valid in a structure-ref. If a package accesses anystructures, it should probably open the structure-refs structure so thatthe structure-ref operator itself will be available.The package's body is speci�ed by begin and/or files clauses. begin3

and files have the same semantics, except that for begin the text is givendirectly in the package de�nition, while for files the text is stored some-where in the �le system. The body consists of a Scheme program, thatis, a sequence of de�nitions and expressions to be evaluated in order. Inpractice, I always use files in preference to begin; begin exists mainly forexpository purposes.A name's imported binding may be lexically overridden or shadowed bysimply de�ning the name using a de�ning form such as define or define-syntax. This will create a new binding without having any e�ect on thebinding in the opened package. For example, one can do (define car'chevy) without a�ecting the binding of the name car in the scheme pack-age.Assignments (using set!) to imported and unde�ned variables are notallowed. In order to set! a top-level variable, the package body must con-tain a define form de�ning that variable. Applied to bindings from thescheme structure, this restriction is compatible with the requirements of theRevised5 Scheme report.It is an error for two of a package's opened structures to export twodi�erent bindings for the same name. However, the current implementationdoes not check for this situation; a name's binding is always taken from thestructure that is listed �rst within the open clause. This may be �xed inthe future.File names in a files clause can be symbols, strings, or lists (Maclisp-style \namelists"). A \.scm" �le type su�x is assumed. Symbols are con-verted to �le names by converting to upper or lower case as appropriate forthe host operating system. A namelist is an operating-system-indepedentway to specify a �le obtained from a subdirectory. For example, the namelist(rts record) speci�es the �le record.scm in the rts subdirectory.If the define-structure form was itself obtained from a �le, then �lenames in files clauses are interpreted relative to the directory in which the�le containing the define-structure form was found. You can't at presentput an absolute path name in the files list.InterfacesAn interface can be thought of as the type of a structure. In its basic formit is just a list of variable names, written (export name : : :). However, inplace of a name one may write (name type), indicating the type of name'sbinding. Currently the type �eld is ignored, except that exported macros4

must be indicated with type :syntax.Interfaces may be either anonymous, as in the example in the introduc-tion, or they may be given names by a define-interface form, for example(define-interface foo-interface (export a c cons))(define-structure foo foo-interface : : :)In principle, interfaces needn't ever be named. If an interface had to be givenat the point of a structure's use as well as at the point of its de�nition, itwould be important to name interfaces in order to avoid having to writethem out twice, with risk of mismatch should the interface ever change. Butthey don't.Still, there are several reasons to use define-interface:1. It is important to separate the interface de�nition from the packagede�nitions when there are multiple distinct structures that have thesame interface | that is, multiple implementations of the same ab-straction.2. It is conceptually cleaner, and useful for documentation purposes, toseparate a module's speci�cation (interface) from its implementation(package).3. My experience is that con�gurations that are separated into interfacede�nitions and package de�nitions are easier to read; the long lists ofexported bindings just get in the way most of the time.The compound-interface operator forms an interface that is the unionof two or more component interfaces. For example,(define-interface bar-interface(compound-interface foo-interface (export mumble)))de�nes bar-interface to be foo-interface with the name mumble added.MacrosHygienic macros, as described in [1, 2], are implemented. Structures mayexport macros; auxiliary names introduced into the expansion are resolvedin the environment of the macro's de�nition.For example, the scheme structure's delay macro is de�ned by therewrite rule 5

(delay exp) =) (make-promise (lambda () exp)).The variable make-promise is de�ned in the scheme structure's underlyingpackage, but is not exported. A use of the delay macro, however, alwaysaccesses the correct de�nition of make-promise. Similarly, the case macroexpands into uses of cond, eqv?, and so on. These names are exported byscheme, but their correct bindings will be found even if they are shadowedby de�nitions in the client package.Higher-order modulesThere are define-module and define forms for de�ning modules that areintended to be instantiated multiple times. But these are pretty kludgey |for example, compiled code isn't shared between the instantiations | so Iwon't describe them yet. If you must know, �gure it out from the followinggrammar.hde�nitioni �! (define-module (hnamei (hnamei hinterfacei)�)hde�nitioni�hnamei)j (define hnamei (hnamei hnamei�))Compiling and linkingScheme 48 has a static linker that produces stand-alone heap images frommodule descriptions. One speci�es a particular procedure in a particularstructure to be the image's startup procedure (entry point), and the linkertraces dependency links as given by open and access clauses to determinethe composition of the heap image.There is not currently any provision for separate compilation; the onlyinput to the static linker is source code. However, it will not be di�cultto implement separate compilation. The unit of compilation is one module(not one �le). Any opened or accessed structures from which macros areobtained must be processed to the extent of extracting its macro de�nitions.The compiler knows from the interface of an opened or accessed structurewhich of its exports are macros. Except for macros, a module may becompiled without any knowledge of the implementation of its opened andaccessed structures. However, inter-module optimization will be availableas an option. 6

The main di�culty with separate compilation is resolution of auxiliarybindings introduced into macro expansions. The module compiler musttransmit to the loader or linker the search path by which such bindings areto be resolved. In the case of the delay macro's auxiliary make-promise(see example above), the loader or linker needs to know that the desiredbinding of make-promise is the one apparent in delay's de�ning package,not in the package being loaded or linked.[I need to describe structure rei�cation.]Semantics of con�guration mutationDuring program development it is often desirable to make changes to pack-ages and interfaces. In static languages it may be necessary to recompileand re-link a program in order for such changes to be reected in a runningsystem. Even in interactive Common Lisp implementations, a change toa package's exports often requires reloading clients that have already men-tioned names whose bindings change. Once read resolves a use of a nameto a symbol, that resolution is �xed, so a change in the way that a nameresolves to a symbol can only be reected by re-reading all such references.The Scheme 48 development environment supports rapid turnaround inmodular program development by allowing mutations to a program's con-�guration, and giving a clear semantics to such mutations. The rule is thatvariable bindings in a running program are always resolved according tocurrent structure and interface bindings, even when these bindings changeas a result of edits to the con�guration. For example, consider the following:(define-interface foo-interface (export a c))(define-structure foo foo-interface(open scheme)(begin (define a 1)(define (b x) (+ a x))(define (c y) (* (b a) y))))(define-structure bar (export d)(open scheme foo)(begin (define (d w) (+ (b w) a))))This program has a bug. The variable b, which is free in the de�nition ofd, has no binding in bar's package. Suppose that b was supposed to beexported by foo, but was omitted from foo-interface by mistake. It isnot necessary to re-process bar or any of foo's other clients at this point.7

One need only change foo-interface and inform the development systemof that one change (using, say, an appropriate Emacs command), and foo'sbinding of b will be found when procedure d is called.Similarly, it is also possible to replace a structure; clients of the old struc-ture will be modi�ed so that they see bindings from the new one. Shadowingis also supported in the same way. Suppose that a client package C opensa structure foo that exports a name x, and foo's implementation obtainsthe binding of x as an import from some other structure bar. Then C willsee the binding from bar. If one then alters foo so that it shadows bar'sbinding of x with a de�nition of its own, then procedures in C that referencex will automatically see foo's de�nition instead of the one from bar thatthey saw earlier.This semantics might appear to require a large amount of computation onevery variable reference: The speci�ed behavior requires scanning the pack-age's list of opened structures, examining their interfaces, on every variablereference, not just at compile time. However, the development environmentuses caching with cache invalidation to make variable references fast.Command processor supportWhile it is possible to use the Scheme 48 static linker for program develop-ment, it is far more convenient to use the development environment, whichsupports rapid turnaround for program changes. The programmer inter-acts with the development environment through a command processor. Thecommand processor is like the usual Lisp read-eval-print loop in that it ac-cepts Scheme forms to evaluate. However, all meta-level operations, suchas exiting the Scheme system or requests for trace output, are handled bycommands, which are lexically distinguished from Scheme forms. This ar-rangement is borrowed from the Symbolics Lisp Machine system, and is rem-iniscent of non-Lisp debuggers. Commands are a little easier to type thanScheme forms (no parentheses, so you don't have to shift), but more im-portantly, making them distinct from Scheme forms ensures that programs'namespaces aren't clutterred with inappropriate bindings. Equivalently, thecommand set is available for use regardless of what bindings happen to bevisible in the current program. This is especially important in conjunctionwith the module system, which puts strict controls on visibility of bindings.The Scheme 48 command processor supports the module system with avariety of special commands. For commands that require structure names,these names are resolved in a designated con�guration package that is dis-8

tinct from the current package for evaluating Scheme forms given to thecommand processor. The command processor interprets Scheme forms ina particular current package, and there are commands that move the com-mand processor between di�erent packages.Commands are introduced by a comma (,) and end at the end of line.The command processor's prompt consists of the name of the current pack-age followed by a greater-than (>).,configThe ,config command sets the command processor's current packageto be the current con�guration package. Forms entered at this pointare interpreted as being con�guration language forms, not Schemeforms.,config commandThis form of the ,config command executes another command in thecurrent con�guration package. For example,,config ,load foo.scminterprets con�guration language forms from the �le foo.scm in thecurrent con�guration package.,in struct-nameThe ,in command moves the command processor to a speci�ed struc-ture's underlying package. For example:user> ,configconfig> (define-structure foo (export a)(open scheme))config> ,in foofoo> (define a 13)foo> a13In this example the command processor starts in a package called user,but the ,config command moves it into the con�guration package,which has the name config. The define-structure form binds, inconfig, the name foo to a structure that exports a. Finally, the9

command ,in foo moves the command processor into structure foo'sunderlying package.A package's body isn't executed (evaluated) until the package is loaded,which is accomplished by the ,load-package command.,in struct-name commandThis form of the ,in command executes a single command in thespeci�ed package without moving the command processor into thatpackage. Example:,in mumble (cons 1 2),in mumble ,trace foo,user [command]This is similar to the ,config and ,in commands. It moves to orexecutes a command in the user package (which is the default packagewhen the Scheme 48 command processor starts).,for-syntax [command]This is similar to the ,config and ,in commands. It moves to orexecutes a command in the current package's \package for syntax,"which is the package in which the forms f in (define-syntax namef) are evaluated.,load-package struct-nameThe ,load-package command ensures that the speci�ed structure'sunderlying package's program has been loaded. This consists of (1)recursively ensuring that the packages of any opened or accessed struc-tures are loaded, followed by (2) executing the package's body as spec-i�ed by its de�nition's begin and files forms.,reload-package struct-nameThis command re-executes the structure's package's program. It ismost useful if the program comes from a �le or �les, when it willupdate the package's bindings after mutations to its source �le.,load �lespec : : :The ,load command executes forms from the speci�ed �le or �lesin the current package. ,load �lespec is similar to (load "�lespec")10

except that the name load needn't be bound in the current packageto Scheme's load procedure.,structure name interfaceThe ,structure command de�nes name in the con�guration packageto be a structure with interface interface based on the current package.,open struct-name�The ,open command opens a new structure in the current package, asif the package's de�nition's open clause had listed struct-name.Con�guration packagesIt is possible to set up multiple con�guration packages. The default con�g-uration package opens the following structures:� module-system, which exports define-structure and the other con-�guration language keywords, as well as standard types and type con-structors (:syntax, :value, proc, etc.).� built-in-structures, which exports structures that are built intothe initial Scheme 48 image; these include scheme, tables, and records.� more-structures, which exports additional structures that are avail-able in the development environment; these include sort, random, andthreads.Note that it does not open scheme.You can de�ne other con�guration packages by simply making a packagethat opens module-system and, optionally, built-in-structures, more-structures, or other structures that export structures and interfaces.For example:> ,config (define-structure foo (export)(open module-systembuilt-in-structuresmore-structures))> ,in foofoo> (define-structure x (export a b)(open scheme)(files x))foo> 11

,config-package-is struct-nameThe ,config-package-is command designates a new con�gurationpackage for use by the ,config command and resolution of struct-namesfor other commands such as ,in and ,open.DiscussionThis module system was not designed as the be-all and end-all of Schememodule systems; it was only intended to help Richard Kelsey and me to or-ganize the Scheme 48 system. Not only does the module system help avoidname clashes by keeping di�erent subsystems in di�erent namespaces, it hasalso helped us to tighten up and generalize Scheme 48's internal interfaces.Scheme 48 is unusual among Lisp implementations in admitting many di�er-ent possible modes of operation. Examples of such multiple modes includethe following:� Linking can be either static or dynamic.� The development environment (compiler, debugger, and commandprocessor) can run either in the same address space as the programbeing developed or in a di�erent address space. The environment anduser program may even run on di�erent processors under di�erent op-erating systems[5].� The virtual machine can be supported by either of two implementa-tions of its implementation language, Prescheme.The module system has been helpful in organizing these multiple modes. Byforcing us to write down interfaces and module dependencies, the modulesystem helps us to keep the system clean, or at least to keep us honest abouthow clean or not it is.The need to make structures and interfaces second-class instead of �rst-class results from the requirements of static program analysis: it must bepossible for the compiler and linker to expand macros and resolve variablebindings before the program is executed. Structures could be made �rst-class(as in FX[6]) if a type system were added to Scheme and the de�nitions ofexported macros were de�ned in interfaces instead of in module bodies, buteven in that case types and interfaces would remain second-class.The prohibition on assignment to imported bindings makes substitutiona valid optimization when a module is compiled as a block. The block com-piler �rst scans the entire module body, noting which variables are assigned.12

Those that aren't assigned (only defined) may be assumed never assigned,even if they are exported. The optimizer can then perform a very simple-minded analysis to determine automatically that some procedures can andshould have their calls compiled in line.The programming style encouraged by the module system is consistentwith the unextended Scheme language. Because module system features donot generally show up within module bodies, an individual module may beunderstood by someone who is not familiar with the module system. This isa great aid to code presentation and portability. If a few simple conditionsare met (no name conicts between packages, no use of structure-ref,and use of files in preference to begin), then a multi-module programcan be loaded into a Scheme implementation that does not support themodule system. The Scheme 48 static linker satis�es these conditions, andcan therefore run in other Scheme implementations. Scheme 48's bootstrapprocess, which is based on the static linker, is therefore nonincestuous. Thiscontrasts with most other integrated programming environments, such asSmalltalk-80, where the system can only be built using an existing versionof the system itself.Like ML modules, but unlike Scheme Xerox modules, this module systemis compositional. That is, structures are constructed by single syntactic unitsthat compose existing structures with a body of code. In Scheme Xerox, theset of modules that can contribute to an interface is open-ended | anymodule can contribute bindings to any interface whose name is in scope.The module system implementation is a cross-bar that channels de�nitionsfrom modules to interfaces. The module system described here has simplersemantics and makes dependencies easier to trace. It also allows for higher-order modules, which Scheme Xerox considers unimportant.References[1] William Clinger and Jonathan Rees. Macros that work. Principles ofProgramming Languages, January 1991.[2] William Clinger and Jonathan Rees (editors). Revised4 report on the al-gorithmic language Scheme. LISP Pointers IV(3):1{55, July-September1991.[3] Pavel Curtis and James Rauen. A module system for Scheme. ACMConference on Lisp and Functional Programming, pages 13{19, 1990.13

[4] David MacQueen. Modules for Standard ML. ACM Conference on Lispand Functional Programming, 1984.[5] Jonathan Rees and Bruce Donald. Program mobile robots in Scheme.International Conference on Robotics and Automation, IEEE, 1992.[6] Mark A. Sheldon and David K. Gi�ord. Static dependent types for �rst-class modules. ACM Conference on Lisp and Functional Programming,pages 20{29, 1990.

14

